3.254 \(\int \frac{\sin (a+\frac{b}{(c+d x)^{2/3}})}{(c e+d e x)^{4/3}} \, dx\)

Optimal. Leaf size=141 \[ -\frac{3 \sqrt{\pi } \sin (a) \sqrt [3]{c+d x} \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b}}{\sqrt [3]{c+d x}}\right )}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}}-\frac{3 \sqrt{\pi } \cos (a) \sqrt [3]{c+d x} S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }}}{\sqrt [3]{c+d x}}\right )}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}} \]

[Out]

(-3*Sqrt[Pi]*(c + d*x)^(1/3)*Cos[a]*FresnelS[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)^(1/3)])/(Sqrt[2]*Sqrt[b]*d*e*(e*(c
 + d*x))^(1/3)) - (3*Sqrt[Pi]*(c + d*x)^(1/3)*FresnelC[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)^(1/3)]*Sin[a])/(Sqrt[2]*
Sqrt[b]*d*e*(e*(c + d*x))^(1/3))

________________________________________________________________________________________

Rubi [A]  time = 0.137753, antiderivative size = 141, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3435, 3417, 3383, 3353, 3352, 3351} \[ -\frac{3 \sqrt{\pi } \sin (a) \sqrt [3]{c+d x} \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b}}{\sqrt [3]{c+d x}}\right )}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}}-\frac{3 \sqrt{\pi } \cos (a) \sqrt [3]{c+d x} S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }}}{\sqrt [3]{c+d x}}\right )}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[a + b/(c + d*x)^(2/3)]/(c*e + d*e*x)^(4/3),x]

[Out]

(-3*Sqrt[Pi]*(c + d*x)^(1/3)*Cos[a]*FresnelS[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)^(1/3)])/(Sqrt[2]*Sqrt[b]*d*e*(e*(c
 + d*x))^(1/3)) - (3*Sqrt[Pi]*(c + d*x)^(1/3)*FresnelC[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)^(1/3)]*Sin[a])/(Sqrt[2]*
Sqrt[b]*d*e*(e*(c + d*x))^(1/3))

Rule 3435

Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Dist[1/f, Subst[Int[((h*x)/f)^m*(a + b*Sin[c + d*x^n])^p, x], x, e + f*x], x] /; FreeQ[{a, b, c, d, e, f, g,
 h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0]

Rule 3417

Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Dist[(e^IntPart[m]*(e*x)
^FracPart[m])/x^FracPart[m], Int[x^m*(a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && Integ
erQ[p] && FractionQ[n]

Rule 3383

Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)], x_Symbol] :> Dist[2/n, Subst[Int[Sin[a + b*x^2], x], x, x^(n/2)],
 x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n/2 - 1]

Rule 3353

Int[Sin[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Dist[Sin[c], Int[Cos[d*(e + f*x)^2], x], x] + Dist[
Cos[c], Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]

Rule 3352

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelC[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rule 3351

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]*FresnelS[Sqrt[2/Pi]*Rt[d, 2]*(e + f*x)])/
(f*Rt[d, 2]), x] /; FreeQ[{d, e, f}, x]

Rubi steps

\begin{align*} \int \frac{\sin \left (a+\frac{b}{(c+d x)^{2/3}}\right )}{(c e+d e x)^{4/3}} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sin \left (a+\frac{b}{x^{2/3}}\right )}{(e x)^{4/3}} \, dx,x,c+d x\right )}{d}\\ &=\frac{\sqrt [3]{c+d x} \operatorname{Subst}\left (\int \frac{\sin \left (a+\frac{b}{x^{2/3}}\right )}{x^{4/3}} \, dx,x,c+d x\right )}{d e \sqrt [3]{e (c+d x)}}\\ &=-\frac{\left (3 \sqrt [3]{c+d x}\right ) \operatorname{Subst}\left (\int \sin \left (a+b x^2\right ) \, dx,x,\frac{1}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\\ &=-\frac{\left (3 \sqrt [3]{c+d x} \cos (a)\right ) \operatorname{Subst}\left (\int \sin \left (b x^2\right ) \, dx,x,\frac{1}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}-\frac{\left (3 \sqrt [3]{c+d x} \sin (a)\right ) \operatorname{Subst}\left (\int \cos \left (b x^2\right ) \, dx,x,\frac{1}{\sqrt [3]{c+d x}}\right )}{d e \sqrt [3]{e (c+d x)}}\\ &=-\frac{3 \sqrt{\pi } \sqrt [3]{c+d x} \cos (a) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }}}{\sqrt [3]{c+d x}}\right )}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}}-\frac{3 \sqrt{\pi } \sqrt [3]{c+d x} C\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }}}{\sqrt [3]{c+d x}}\right ) \sin (a)}{\sqrt{2} \sqrt{b} d e \sqrt [3]{e (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.170769, size = 96, normalized size = 0.68 \[ -\frac{3 \sqrt{\frac{\pi }{2}} (c+d x)^{4/3} \left (\sin (a) \text{FresnelC}\left (\frac{\sqrt{\frac{2}{\pi }} \sqrt{b}}{\sqrt [3]{c+d x}}\right )+\cos (a) S\left (\frac{\sqrt{b} \sqrt{\frac{2}{\pi }}}{\sqrt [3]{c+d x}}\right )\right )}{\sqrt{b} d (e (c+d x))^{4/3}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[a + b/(c + d*x)^(2/3)]/(c*e + d*e*x)^(4/3),x]

[Out]

(-3*Sqrt[Pi/2]*(c + d*x)^(4/3)*(Cos[a]*FresnelS[(Sqrt[b]*Sqrt[2/Pi])/(c + d*x)^(1/3)] + FresnelC[(Sqrt[b]*Sqrt
[2/Pi])/(c + d*x)^(1/3)]*Sin[a]))/(Sqrt[b]*d*(e*(c + d*x))^(4/3))

________________________________________________________________________________________

Maple [F]  time = 0.042, size = 0, normalized size = 0. \begin{align*} \int{\sin \left ( a+{b \left ( dx+c \right ) ^{-{\frac{2}{3}}}} \right ) \left ( dex+ce \right ) ^{-{\frac{4}{3}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(4/3),x)

[Out]

int(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(4/3),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: IndexError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(4/3),x, algorithm="maxima")

[Out]

Exception raised: IndexError

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (d e x + c e\right )}^{\frac{2}{3}} \sin \left (\frac{a d x + a c +{\left (d x + c\right )}^{\frac{1}{3}} b}{d x + c}\right )}{d^{2} e^{2} x^{2} + 2 \, c d e^{2} x + c^{2} e^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(4/3),x, algorithm="fricas")

[Out]

integral((d*e*x + c*e)^(2/3)*sin((a*d*x + a*c + (d*x + c)^(1/3)*b)/(d*x + c))/(d^2*e^2*x^2 + 2*c*d*e^2*x + c^2
*e^2), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)**(2/3))/(d*e*x+c*e)**(4/3),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (a + \frac{b}{{\left (d x + c\right )}^{\frac{2}{3}}}\right )}{{\left (d e x + c e\right )}^{\frac{4}{3}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(a+b/(d*x+c)^(2/3))/(d*e*x+c*e)^(4/3),x, algorithm="giac")

[Out]

integrate(sin(a + b/(d*x + c)^(2/3))/(d*e*x + c*e)^(4/3), x)